Chemotactic network responses to live bacteria show independence of phagocytosis from chemoreceptor sensing

نویسندگان

  • Netra Pal Meena
  • Alan R Kimmel
چکیده

Aspects of innate immunity derive from characteristics inherent to phagocytes, including chemotaxis toward and engulfment of unicellular organisms or cell debris. Ligand chemotaxis has been biochemically investigated using mammalian and model systems, but precision of chemotaxis towards ligands being actively secreted by live bacteria is not well studied, nor has there been systematic analyses of interrelationships between chemotaxis and phagocytosis. The genetic/molecular model Dictyostelium and mammalian phagocytes share mechanistic pathways for chemotaxis and phagocytosis; Dictyostelium chemotax toward bacteria and phagocytose them as food sources. We quantified Dictyostelium chemotaxis towards live gram positive and gram negative bacteria and demonstrate high sensitivity to multiple bacterially-secreted chemoattractants. Additive/competitive assays indicate that intracellular signaling-networks for multiple ligands utilize independent upstream adaptive mechanisms, but common downstream targets, thus amplifying detection at low signal propagation, but strengthening discrimination of multiple inputs. Finally, analyses of signaling-networks for chemotaxis and phagocytosis indicate that chemoattractant receptor-signaling is not essential for bacterial phagocytosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantification of Live Bacterial Sensing for Chemotaxis and Phagocytosis and of Macropinocytosis

Initial immunological defense mechanisms to pathogen invasion rely on innate pathways of chemotaxis and phagocytosis, original to ancient phagocytes. Although chemotaxis has been well-studied in mammalian and model systems using purified chemoattractants in defined conditions, directed movement toward live bacteria has been more difficult to assess. Dictyostelium discoideum is a professional ph...

متن کامل

Precision sensing by two opposing gradient sensors: how does Escherichia coli find its preferred pH level?

It is essential for bacteria to find optimal conditions for their growth and survival. The optimal levels of certain environmental factors (such as pH and temperature) often correspond to some intermediate points of the respective gradients. This requires the ability of bacteria to navigate from both directions toward the optimum location and is distinct from the conventional unidirectional che...

متن کامل

Conserved amplification of chemotactic responses through chemoreceptor interactions.

Many bacteria concentrate their chemoreceptors at the cell poles. Chemoreceptor location is important in Escherichia coli, since chemosensory responses are sensitive to receptor proximity. It is not known, however, whether chemotaxis in other bacteria is similarly regulated. To investigate the importance of receptor-receptor interactions in other bacterial species, we synthesized saccharide-bea...

متن کامل

Responses of Escherichia coli bacteria to two opposing chemoattractant gradients depend on the chemoreceptor ratio.

Escherichia coli chemotaxis has long served as a simple model of environmental signal processing, and bacterial responses to single chemical gradients are relatively well understood. Less is known about the chemotactic behavior of E. coli in multiple chemical gradients. In their native environment, cells are often exposed to multiple chemical stimuli. Using a recently developed microfluidic che...

متن کامل

Phototactic and Chemotactic Signal Transduction by Transmembrane Receptors and Transducers in Microorganisms

Microorganisms show attractant and repellent responses to survive in the various environments in which they live. Those phototaxic (to light) and chemotaxic (to chemicals) responses are regulated by membrane-embedded receptors and transducers. This article reviews the following: (1) the signal relay mechanisms by two photoreceptors, Sensory Rhodopsin I (SRI) and Sensory Rhodopsin II (SRII) and ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2017